
Chapter 1

Product Distributions for

Distributed Optimization

Stefan R. Bieniawski 1

David H. Wolpert 2

With connections to bounded rational game theory, information theory and sta-
tistical mechanics, Product Distribution (PD) theory provides a new framework for
performing distributed optimization. Furthermore, PD theory extends and formalizes
Collective Intelligence, thus connectingt distributed optimization to distributed Rein-
forcement Learning (RL). This paper provides an overview of PD theory and details
an algorithm for performing optimization derived from it. The approach is demon-
strated on two unconstrained optimization problems, one with discrete variables and
one with continuous variables. To highlight the connections between PD theory and
distributed RL, the results are compared with those obtained using distributed re-
inforcement learning inspired optimization approaches. The inter-relationship of the
techniques is discussed.

1.1 Introduction

Traditional optimization techniques use centralized approaches for obtaining a
solution to a problem. An alternate approach pursued here is to distribute the
optimization among agents that represent the variables in the problem. For-
mulating the problem as a distributed stochastic optimization allows for the
application of techniques from machine learning, statistics, multi-agent systems,
and game theory. In addition, approaches can be developed using these fields
which take advantage of the local structure of certain optimization problems.
The current work leverages the aforementioned fields by applying a new tech-

1Department of Aeronautics & Astronautics, Stanford University, stefanb@stanford.edu
2NASA Ames Research Center,dhw@ptolemy.arc.nasa.gov

2 Product Distributions for Distributed Optimization

nique, Product Distribution (PD) theory, to several example optimization prob-
lems. PD theory extends and formalizes previous work done to improve with
distributed reinforcement learning techniques entitled Collective Intelligence.
Typically in stochastic optimization approaches probability distributions are

used to help search for a point in the variable space which optimizes the objec-
tive function. In contrast, in the PD approach the search is for a probability
distribution across the variable space that optimizes an associated Lagrangian.
Since the probability distribution is a vector in a Euclidean space, the search
can be done via gradient based methods even if the variable space is categorical.
Similar techniques have been successfully applied to a variety of distributed op-
timization problems including network routing, computing resource allocation,
and data collection by autonomous rovers [2, 3].
PD theory can be viewed as the information-theoretic extension of conven-

tional full-rationality game theory to the case of bounded rational agents [1].
Information theory shows that the equilibrium of a game played by bounded
rational agents is the optimizer of a Lagrangian of the probability distribu-
tion of the agents’ joint-moves. In any game, bounded rational or otherwise,
the agents are independent, with each agent i choosing its move xi at any in-
stant by sampling its probability distribution (mixed strategy) at that instant,
qi(xi). Accordingly, the distribution of the joint-moves is a product distribution,
P (x) =

∏

i qi(xi). In this representation, all coupling between the agents occurs
indirectly; it is the separate distributions of the agents {qi} that are coupled,
while the actual moves of the agents are independent. As a result the optimiza-
tion of the Lagrangian can be done in a completely distributed manner. This
approach provides a broadly applicable way to cast any optimization problem
as the equilibrating process of a multi-agent system, together with an efficient
method for that equilibrating process.
The next section presents the approaches for minimizing the Lagrangian

provided by PD theory and the related approaches obtained from distributed
RL. The performance on several example problems is then presented.

1.2 Optimizing the Lagrangian

Given that the agents in a multi-agent system are bounded rational, if they play
a team game with world utility G, their equilibrium will be the optimizer of G.
The equilibrium can be found by minimizing a Lagrangian which is a function
of the agents’ probabilities [1]. For the unconstrained optimization problem,

min
~x

G(~x)

assume each agent sets one component of ~x as that agent’s action. The La-
grangian Li(qi) for each agent as a function of the probability distribution across
its actions is,

Li(qi) = E[G(xi, x(i))] − T S(qi) =
∑

xi

qi(xi)E[G(xi, x(i))|xi] − T S(qi)

Product Distributions for Distributed Optimization 3

where G is the world utility (system objective) which depends upon the ac-
tion of agent i, xi, and the actions of the other agents, x(i). The expectation
E[G(xi, x(i))|xi] is evaluated according to the distributions of the agents other
than i, P (x(i)) =

∏

j 6=i qj(xj). The entropy S is given by:

S(qi) = −
∑

xj

qi(xj) ln qi(xj)

Each agent then addresses the following local optimization problem,

min
qi

Li(qi) s.t.
∑

xi

qi(xi) = 1, qi(xi) ≥ 0,∀xi

The Lagrangian is composed of two terms weighted by the temperature T :
the expected reward across i’s actions, and the entropy associated with the
probability distribution across i’s actions. The temperature provides the means
to trade-off exploitation of good actions (low temperature) with exploration of
other possible actions (high temperature).
In this paper two algorithms for optimizing the Lagrangian are considered.

The first is a variant of Newton’s method for directly descending the Lagrangian.
The second is Brouwer updating, which, under different names, is the most
common scheme employed in RL-based algorithms for finding game equilibria.

1.2.1 Nearest Newton descent

The minimization of the Lagrangian is amenable to solution using gradient de-
scent or Newton updating since both the gradient and the Hessian are obtained
in closed form. Using Newton updating and enforcing the constraint on to-
tal probability, the following update rule, referred to as Nearest Newton [4], is
obtained:

qi(xi)→ qi(xi)− αqi(xi)×

{

E[G|xi]− E[G]

T
+ S(qi) + ln qi(xi)

}

(1.1)

where α plays the role of a step size.

1.2.2 Role of private utilities

Performing the update at each iteration involves a separate conditional expected
utility for each agent. These are determined either exactly if a closed form
expression is available or estimated using Monte-Carlo sampling. Since accurate
estimates usually require extensive sampling, the G occurring in each agent i’s
update rule can be replaced with a private utility gi chosen to ensure that the
Monte Carlo estimation of E(gi|xi) has both low bias (with respect to estimating
E(G|xi)) and low variance [7]. Intuitively bias represents the alignment between
the private utility and world utility while variance measures the ability of an
agent to distinguish its contribution from that of the other agents.

4 Product Distributions for Distributed Optimization

In this work two private utilities are relevant, Team Game (TG) and Won-
derful Life Utility (WLU)[1, 2, 3]. These are defined as:

gTGi
(xi, x(i)) = G(xi, x(i))

gWLUi
(xi, x(i)) = G(xi, x(i))−G(CLi, x(i))

For the team game, the private utility is simply the world utility. For WLU, the
private utility is the world utility minus the world utility with the agent action
“clamped” by the value CLi. Both of these utilities have zero bias. However,
due to the subtracted term, WLU has much lower variance than TG.

1.2.3 Brouwer updating

An alternate way to try to find the q that minimizes the Lagrangian is an iterative
process akin to the best-response scheme of game theory. Given any current
distribution q, all agents i simultaneously replace their current distributions qi

with the distribution given by,

qi(xi) = e
− 1

T
Eq(i)

[gi|xi]/
∑

xi

e
− 1

T
Eq(i)

[gi|xi] (1.2)

The conditional expected utilities can, if necessary, be estimated once again
using Monte-Carlo sampling. One problem with Brouwer updating is that there
is no reason to believe that it will converge. In practice the Monte Carlo samples
are “aged” by a factor γ, to weight older sample points less heavily than more
recent points. See [2, 3] for details. This modification to Brouwer updating
still provides no formal guarantees. Such guarantees are obtained, however, if
rather than conventional “parallel” Brouwer updating, one uses “serial Brouwer
updating”, in which only one agent at a time updates its distribution. Both of
these variants are considered in this paper.

1.3 Results

1.3.1 Discrete optimization example problem

A discrete optimization problem, the bin packing problem from the operations
research literature [5], is used to compare the methods for minimizing the La-
grangian. This problem consists of assigning N items (the agents) of differing
sizes into the smallest number of bins each with capacity c. The instances con-
sisted of 60 items to be packed into bins each of capacity 100. Since in general
the minimum number of bins is not known, the move space of the agents is set
to the number of items. The objective function used is,

G =

{
∑N

i=1[(
c
2)

2 − (xi −
c
2)

2] if xi ≤ c
∑N

i=1(xi −
c
2)

2 if xi > c
(1.3)

Product Distributions for Distributed Optimization 5

where xi is the total size of the items in bin i. This objective function encourages
either full or empty bins and strongly penalizes overfilled bins.
Figure 1.1a compares the convergence versus iteration of all three schemes.

Shown are the average objectives and the 90% confidence intervals for 20 cases.
In the greedy serial Brouwer approach, only the agent causing the largest de-
crease in the Lagrangian updates its probabilities at each iteration. For these
results WLU is used with the clamping value set to 0. The remaining parameter
settings are α = 0.1, γ = 0.8, and 100 Monte-Carlo samples for each iteration.
The Nearest Newton approach and parallel Brouwer are seen to obtain similar
results, with Nearest Newton converging faster. Greedy serial Brouwer tends to
obtain poorer solutions due to the combination of limited sampling and overly
greedy updating. Since only a single agent is updated each iteration the conver-
gence is also quite slow, particularly for the greedy implementation where the
agents must all evaluate their private utilities.
A more efficient alternative for serial Brouwer is to delegate the agent to be

updated at the start of each iteration - either randomly or sequentially. Only
a single agent now needs to evaluate its private utility each iteration, reducing
the number of function calls by a factor of (N + 1)/2. This variant is compared
in Figure 1.1b on a function call rather than iteration basis. The agents are
updated sequentially although random selection obtained similar results. For
comparison Nearest Newton is shown with two different Monte-Carlo block sizes:
100 and 20. Nearest Newton with a reduced block size was more effective at
lowering the number of function calls, although the sequential serial Brouwer
does find a comparable final objective. The initial behavior of the serial Brouwer
is again the result of limited sampling and overly aggressive updating. The slower
convergence results from expending Monte-Carlo samples, and the associated
function calls, on updating agents which are not important to reducing the
Lagrangian. This suggests that variants which instead estimate which agent to
update at each iteration are likely to be more efficient.

1.3.2 Continuous optimization example problem

To illustrate the Lagrangian minimization techniques in the continuous domain,
a classical calculus of variations problem is solved, the Brachistochrone prob-
lem [8]. The objective is to find the minimum time trajectory between two
points for an object moving only under the influence of gravity. Following [8]
the objective function is:

t12 =

∫ (x2,y2)

(x1,y1)

f dx where f = (1 + (dy/dx)2)1/2 (2gy)1/2 (1.4)

A trapezoidal approximation is made to the integral at N points and a central
finite difference is used for the derivative. This results in the following optimiza-
tion problem with respect to the N vertical locations, y1, ..., yN :

min
~y

G =
∆x

2
[f0 + 2f1 + ...+ 2fN − 1 + 2fN]

6 Product Distributions for Distributed Optimization

0 200 400 600 800 1000
0

2

4

6

8

10
x 10

4

O
bj

ec
tiv

e

Function Call/100

Newton 100 MC
Sequential
Newton 20 MC

0 100 200 300
0

2

4

6

8

10
x 10

4

O
bj

ec
tiv

e

Iteration

Newton
Parallel Brouwer
Greedy Serial

(a) (b)

Student Version of MATLAB

Figure 1.1: Comparison of Lagrangian minimization techniques for the bin packing
problem. (a) Baseline comparison. (b) Reduced function call comparison.

where, for the interior points

fi = (1 + [
1

2∆x
(yi+1 − yi−1]

2)1/2 (2gyi)
1/2 (1.5)

For the boundary points, f0 and fN , forward or backward approximations are
used for the derivatives.
This optimization problem was solved by a commercially available gradient

based optimizer [6] and by the Lagrangian minimization approaches described in
Section 1.2. The approaches described in Section 1.2 are particularly applicable
to objectives such as Eq. 1.5 due to the sparse nature of the interactions between
the variables. Since contributions to the objective fi are only functions only of
a single variable and its neighbors a suitable private utility is,

gi(yi−1, yi, yi+1) =
∆x

2

[

2fi−1(yi−2, yi−1, yi)

+ 2fi(yi−1, yi, yi+1) + 2fi+1(yi, yi+1, yi+2)
]

(1.6)

Eq. 1.6 is used for the interior agents while similar private utilities can be ob-
tained for the first and last agents. This private utility has no bias since it
includes all the dependencies of the world utility upon agent i. Due to the
known dependencies, two options exist for obtaining the conditional expected
utilities, E(gi|xi), described in Section 1.2. First, sampling could be used as
before but in place of WLU, Eq. 1.6 can be used. Second, the probability distri-
butions of the dependent agents can be integrated along with Eq. 1.6 to obtain
the expected private utilities without sampling.
Figure 1.2a shows the objective function convergence history for the gradient

based, parallel Brouwer and Newton approaches. Relevant parameters are α
= 0.2, γ = 0.8, 10 Monte-Carlo samples per iteration, and T = 0.01. Ten

Product Distributions for Distributed Optimization 7

0 20 40 60 80 100
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Function Calls

O
bj

ec
tiv

e

Newton
Parallel Brouwer
Gradient Based

0

0.5

1

1.5

0

0.5

1

0

5

10

15

Y

X

P
ro

ba
bi

lit
y

(a) (b)

Student Version of MATLAB

Figure 1.2: Lagrangian minimization approaches applied to the Brachistochrone prob-
lem. a) Comparison of approaches. b) Converged probability distributions.

optimizations were performed and the 90% confidence bars are shown. For
the gradient based optimization a random starting point was used each time.
The sampled approaches (Newton and Brouwer) perform comparably, finding a
minimum about 5% higher than the gradient based optimum. The key result is
comparable convergence rate in terms of function calls.

Figure 1.2b shows converged probability distributions for the agents. This
illustrates the additional information provided by the non-gradient based ap-
proaches: non-linear sensitivities. Since at convergence the probability distribu-
tions are related to the objective through the Boltzmann distribution, sensitivi-
ties are obtained without additional cost.

Figure 1.3 shows the iteration history for the analytical case. The upper
plot shows the objective function, while the lower plot shows the convergence
criteria. While all three quickly find a good minimum, serial Brouwer is actually
converging faster.

Another advantage of this approach is the ability to treat stochastic boundary
conditions. Since these are typically represented as probability distributions,
they can be incorporated as additional agents whose probabilities are simply
not updated.

1.4 Conclusions

Product Distribution (PD) theory provides an effective framework for perform-
ing distributed optimization. One theoretical perspective for PD theory has been
provided and a distributed optimization algorithm based upon it has been devel-
oped. The approach has been demonstrated on two optimization problems, one
discrete and one continuous. The comparisons included results obtained with

8 Product Distributions for Distributed Optimization

0 5 10 15 20
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Iteration

O
bj

ec
tiv

e
Newton
Parallel Brouwer
Serial Brouwer

0 5 10 15 20
0

2

4

6

8

10

Iteration

C
on

ve
rg

en
ce

 C
rit

er
ia

Student Version of MATLAB

Figure 1.3: Comparison of Lagrangian minimization approaches for analytical version
of the Brachistochrone problem.

variants of distributed Reinforcement Learning (RL) inspired optimization ap-
proaches. The inter-relationship between the approaches has been highlighted.

Bibliography

[1] Wolpert, D.H., ”Information theory - the bridge connecting bounded rational
game theory and statistical physics”, in Complex Engineering Systems, D.
Braha, Ali Minai, and Y. Bar-Yam (Editors), Perseus books, in press.

[2] Wolpert, D.H., Wheeler, K., Tumer, K., “Collective Intelligence for Control
of Distributed Dynamical Systems,” Europhysics Letters, vol. 49 issue 6,
708-714, 2000.

[3] Wolpert, D. H., Tumer, K., “Collective Intelligence, Data Routing, and
Braess’ Paradox,” Journal of Artificial Intelligence Research, 2002.

[4] Wolpert, D.H., Bieniawski, S., ”Distributed Control by Lagrangian Steepest
Descent” submitted to Conference on Decision and Control 2004.

[5] J.E.Beasley, ”OR-Library: distributing test problems by electronic mail”,
Journal of the Operational Research Society, 41 (11), pp 1069-1072, 1990.
http://mscmga.ms.ic.ac.uk/info.html

[6] MATLAB Optimization Toolbox User’s Guide. The MathWorks, 2000.

[7] Duda, R., Hart, P., and Stork, D., Pattern Recognition, Wiley, 2001.

[8] Eric W. Weisstein, “Brachistochrone Problem.”
From MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/BrachistochroneProblem.html

